China best 30HP/22kw 2.7-3.8m3/Min Single VSD Screw Air Compressor for Mechanical Factory air compressor CHINAMFG freight

Product Description

Model SGV 22
Type of Cooling   Air Cooling/Water cooling
Working Pressure psig 102 116 145 174
bar 7 8 10 12
Air Delivery cfm 134.2 127.1 113.0 95.3
m3/min 3.8 3.6 3.2 2.7
Motor Power kw/hp 22/30
Cooling Method   Air Cooling/Water Coolin
Type of Driving   Driect driven
Dimension(mm) L 1380
W 850
H 1170
Weight KG 600
Air Outlet Pipe
Voltage   380V / 3PH / 50HZ / 60HZ
220V / 3PH / 50HZ / 60HZ
440V / 3PH / 50HZ / 60HZ
415V / 3PH / 50HZ / 60HZ
Can be customized
Exhaust Oil Volum   <3ppm
Noise db 65±2
Outlet Air Humidity ºC ambient temperature+15ºC

Technical Data of Direct Drive Electric Motor Screw Air Compressors

Model Working Pressure Capacity Motor Power Dimension
Net Weight
Air Outlet Pipe Diameter
Psi bar Cfm m3/min kw/hp
SGV08 102 7 42.4 1.2 7.5/10 900*670*850 200 1/2”
116 8 38.8 1.1
145 10 33.5 0.95
174 10 28.3 0.8
SGV11 102 7 58.3 1.65 11/15 1080*750*1571 280 3/4”
116 8 53 1.5
145 10 45.9 1.3
174 12 38.8 1.1
SGV15 102 7 88.3 2.5 15/20 1080*750*1571 300 3/4”
116 8 81.2 2.3
145 10 74.2 2.1
174 12 67.1 1.9
SGV18 102 7 113 3.2 18.5/25 1380*850*1185 430 1”
116 8 105.9 3
145 10 95.3 2.7
174 12 84.7 2.4
SGV22 100 7 134.2 3.8 22/30 1380*850*1185 450 1”
116 8 127.1 3.6
145 10 113 3.2
174 12 95.3 2.7
SGV30 102 7 187.1 5.3 30/40 1380*850*1185 500 1”
116 8 176.6 5
145 10 158.9 4.5
174 12 141.2 4
SGV37 102 7 240.1 6.8 37/50 1500*1000*1345 650 11/2″
116 8 218.9 6.2
145 10 197.7 5.6
174 12 176.6 5
SGV45 102 7 261.3 7.4 45/60 1500*1000*1345 680 11/2″
116 8 247.2 7
145 10 218.9 6.2
174 12 197.7 5.6
SGV55 102 7 353.1 10 55/75 1800*1250*1670 1150 2″
116 8 339 9.6
145 10 300.1 8.5
174 12 268.4 7.6
SGV75 102 7 473.2 13.4 75/100 1800*1250*1670 1200 2″
116 8 444.9 12.6
145 10 395.5 11.2
174 12 353.1 10
SGV90 102 7 572 16.2 90/120 1800*1250*1670 1350 2″
116 8 529.7 15
145 10 487.3 13.8
174 12 434.3 12.3
SGV110 102 7 741.5 21 110/150 2300*1470*1840 1800 2 1/2”
116 8 699.1 19.8
145 10 614.4 17.4
174 12 522.6 14.8
SGV132 102 7 865.1 24.5 132/175 2300*1470*1840 1850 2 1/2”
116 8 819.2 23.2
145 10 723.9 20.5
174 12 614.4 17.4
SGV160 102 7 1013.4 28.7 160/200 2300*1470*1840 2000 2 1/2”
116 8 974.6 27.6
145 10 868.6 24.6
174 12 759.2 21.5
SGV185 102 7 1129.9 32 185/250 3150*1980*2152 3500 DN85
116 8 1073.4 30.4
145 10 967.5 27.4
174 12 875.7 24.8
SGV220 102 7 1271.2 36 220/300 3150*1980*2152 3800 DN85
116 8 1211.1 34.3
145 10 1066.4 30.2
174 12 978.1 27.7
SGV250 102 7 1483 42 250/350 3150*1980*2152 4000 DN85
116 8 1430.1 40.5
145 10 1348.8 38.2
174 12 1218.2 34.5
Motor Protection Class: IP23/IP54/IP55 or as per your required
Voltage: 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.

Q1: What is the rotor speed for the air end?
A1: 2980rmp.

Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)

Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).

Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.

Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.

Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.

Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.

Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.

Q9: Do you have spare parts in stock?
A9: Yes, we do.

Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.

If you have any questions, please don’t hesitate to contact us. Thanks!  

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type


air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.


Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.


Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.


The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China best 30HP/22kw 2.7-3.8m3/Min Single VSD Screw Air Compressor for Mechanical Factory   air compressor CHINAMFG freightChina best 30HP/22kw 2.7-3.8m3/Min Single VSD Screw Air Compressor for Mechanical Factory   air compressor CHINAMFG freight
editor by CX 2023-10-21